SURVEY OF BACTERIAL CAUSES OF LUNG INFECTION IN NON-CYSTIC FIBROSIS BRONCHIECTASIS IN THAILAND

Pailin Ratanawatkul¹, Tulyachat Khotsopa², Apichart So-Ngern³, Worawat Chumpangern¹, Itthiphat Arunsurat¹ and Wipa Reechaipichitkul¹

¹Division of Pulmonary and Critical Care Medicine, Department of Medicine; ²Department of Medicine; ³Division of Sleep Medicine, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen Province, Thailand

Abstract. Bronchiectasis can predispose patients to lung infections. In this study, the primary aim was to determine the etiology of lung infection among non-cystic fibrosis bronchiectasis patients and the secondary aim was to identify factors associated with Pseudomonas aeruginosa infection in order to inform empiric treatment of these patients and guide efforts to prevent Pseudomonas aeruginosa infection among these patients at the study hospital. We retrospectively reviewed the charts of non-cystic fibrosis bronchiectasis patients with an episode of infection who presented to Srinagarind Hospital, Khon Kaen Province, Thailand during 2011-2016. Demographic data, sputum culture results and chest radiograph results were recorded. A total of 144 patients were included in this study. The mean [\pm standard deviation (SD)] age of subjects was 65 (\pm 14.4) years; 57.6% male. Of the 144 subjects, 18 (12.5%) had no growth on sputum culture, 71 (49.3%) grew normal throat flora and 55 (38.2%) grew out a potential pathogen. These pathogens consisted of Pseudomonas aeruginosa (n = 19, 13.2%), Klebsiella pneumoniae (n = 9, 6.3%), Escherichia coli (n = 6, 4.2%), and Staphylococcus aureus (n = 5, 3.5%). Factors significantly associated with Pseudomonas aeruginosa infection were: female gender (odds ratio (OR): 7.1; 95% confident interval (CI): 1.9-26.6; *p*=0.004), having had a prior history of pulmonary tuberculosis (OR: 5.9; 95%CI: 1.4-24.2; *p*=0.015) and taking N-acetylcysteine (OR: 4.7; 95%CI: 1.1-19.4; p=0.033). In our study, we identified a potential pathogen in 38.2% of subjects. P. aeruginosa was the most common pathogen isolated and its infection was associated with female gender, prior history of pulmonary tuberculosis and use of N-acetylcysteine. These data can guide management of these subjects at the study institution.

Keywords: bronchiectasis, Pseudomonas aeruginosa, lung infection

Correspondence: Pailin Ratanawatkul, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Khon Kaen University, 123 Mittraphap Road, Nai-Muang Sub-district, Muang District, Khon Kaen Province, 40002, Thailand.

Tel: +66 (08) 5553 4517; Email: pailin@kku.ac.th

INTRODUCTION

Non-cystic fibrosis bronchiectasis is a chronic airway disease associated with impaired phlegm clearance predisposing to frequent lung infections and colonization with pathogens. (Goeminne and Dupont, 2010; Pasteur *et al*, 2010). Symptoms of bronchiectasis

include chronic cough, tenacious sputum production, hemoptysis, and dyspnea that usually worsens during an episode of infection (Baydarian and Walter, 2008). Frequent infections decrease quality of life, increase the need for hospitalization and increase mortality risk (McShane *et al*, 2013).

Patients with bronchiectasis are more likely to be colonized with both potentially pathogenic microorganisms (PPMs) and non-potentially pathogenic microorganisms (NPPMs) (Cabello et al, 1997). Both PPMs and NPPMs can cause lung infection in bronchiectasis patients (Cabello et al, 1997; Cole, 1986). Commonly reported PPMs in bronchiectasis patients include: Pseudomonas aeruginosa, Haemophilus spp, Streptococcal pneumoniae, Staphylococcus aureus and Moraxella catarrhalis. NPPMs reported include Streptococcus viridian, Enterobacter, Corynebacterium, Neisseria spp and coagulase-negative Staphylococcus (Angrill et al, 2002; Cabello et al, 1997). Previous studies have reported the most common microorganism isolated in patients with bronchiectasis is *P. aeruginosa* (Borekci et al, 2016; Chawla et al, 2015; Dimakou et al, 2016; Palwatwichai et al, 2002). Bronchiectasis patients with chest infection should receive antimicrobial therapy covering P. aeruginosa (Feldman, 2011). Previously reported risk factors for P. aeruginosa in sputum included older age, previous corticosteroid use, history of frequent episodes of infection and poor lung function (Angrill et al, 2002; Chawla et al, 2015; Guan et al, 2014). Some previous studies have reported isolating other microorganisms, such as a study from Spain that reported the most common microorganism isolated was Haemophilus influenzae (Angrill et al, 2002).

The aims of this study were to identify

the microorganisms causing infected bronchiectasis in Thai patients with noncystic fibrosis bronchiectasis and evaluate the factors associated with *P. aeruginosa* infection, in order to guide empiric treatment.

MATERIALS AND METHODS

We conducted this retrospective cohort study among patients with non-cystic fibrosis bronchiectasis who presented to Srinagarind Hospital, Khon Kaen Province, Thailand from January 2011 to October 2016. This study was approved by the Khon Kaen Institutional Ethics Committee (HE-581450). We retrospectively reviewed the charts of non-cystic fibrosis bronchiectasis patients aged ≥18 years clinically diagnosed with lung infection defined as a change in one or more of the general symptoms of bronchiectasis: increasing amount of sputum or purulent sputum, worsening dyspnea, increasing cough, having new onset fever or developing hemoptysis (Pasteur et al, 2010). Patients with malignancies, immunocompromised patients, such as those with HIV infection, organ transplant and patients using immunosuppressive medications were excluded from this study. Demographic data, radiographic findings and spirometry results were recorded. Sputum cultures used for this study were the first collected sputum culture, if the patient had more than one culture specimen. Quantitative data are reported as means (± standard deviation (SD)) and qualitative data are reported as percentages. Univariate logistic regression analysis was used to evaluate the factors associated with P. aeruginosa infection. Stepwise backward multiple logistic regression analysis was used to analyze the factors with a *p*-value <0.20 on univariate analysis or factors with previous reports of clinical significance. Adjusted odds ratios (OR) and their 95% confidence intervals (CI) were calculated. A *p*-value <0.05 was considered statistically significant. All data were analyzed using STATA version 11 (STATA Statistical Software, College Station, TX).

RESULTS

A total of 144 subjects were included in this study. The demographic data are shown in Table 1. The mean (\pm SD) age of subjects was 65.1 (\pm 14.4) years; 57.6% male (n = 83). Seventy patients (45.1%) were former smokers and 9

Table 1 Demographic characteristics of study subjects (n = 144).

Characteristics	n (%)	
Mean (SD) age in years	65.1	
Male	83	(57.6)
Smoking history		
Non-smoker	70	(48.6)
Former smoker	65	(45.1)
Current smoker	9	(6.3)
Symptoms		
Cough	140	(97.2)
Sputum production	136	(94.4)
Dyspnea	113	(78.5)
Fever	73	(50.7)
Non-massive hemoptysis	34	(23.6)
Massive hemoptysis	29	(20.1)
Wheezing	5	(3.5)
Comorbid diseases		
Hypertension	60	(41.7)
Diabetes mellitus	23	(16)
Rheumatoid arthritis	5	(3.5)
Chronic kidney disease	5	(3.5)
Coronary heart disease	1	(0.7)
History of pulmonary tuberculosis	91	(63.2)
Antibiotic use in the previous 90 days	47	(32.6)
Destroyed lung	5	(3.5)
Number of previous infected bronchiectasis episode		
None	106	(73.6)
Once	28	(19.4)
Twice	9	(6.3)
≥ 3 times	1	(0.7)
Long term medication use		
Short acting beta-2 agonist	71	(49.3)
Inhale corticosteroid / long acting beta-2 agonist	40	(27.8)
N-acetylcysteine	31	(21.5)
Long term antibiotic use	9	(6.3)

SD: standard deviation

(6.3%) were current smokers. Ninetyone subjects (63.2%) had a prior history of pulmonary tuberculosis. The most common presenting symptom reported was cough (n = 140, 97.2%), followed by increased sputum production (n = 136, 94.4%), dyspnea (n = 113, 78.5%), fever (n = 113, 78.5%) = 73, 50.7%), non-massive hemoptysis (n = 34, 23.6%), massive hemoptysis (n = 29, 20.1%) and wheezing (n = 5, 3.5%). Sixty patients (41.7%) had hypertension and 23 (16%) had diabetes mellitus. Fortyseven patients (32.6%) had a history of antibiotic use during the previous 90 days. Seventy-one patients (49.3%) had used a short-acting beta-2 agonist (SABA), 40 (27.8%) had used an inhaled corticosteroid along with a long acting bronchodilator (ICS-LABA) and 31 (21.5%) had used N-acetylcysteine. Nine subjects (6.3%) were prescribed long term antibiotics. On chest radiography, a destroyed lung,

Table 2 Culture results among study subjects (n = 144).

Culture results	n (%)	
No growth	18	(12.5)
Normal flora	71	(49.3)
Potential pathogens isolated	55	(38.2)
Pseudomonas aeruginosa	19	(13.2)
Klebsiella pneumoniae	9	(6.3)
Escherichia coli	6	(4.2)
Staphylococcus aureus	5	(3.5)
Acinetobacter baumannii	4	(2.8)
Stenotrophomonas maltophilia	4	(2.8)
Proteus spp	3	(2.1)
Haemophilus influenzae	2	(1.4)
Moraxellla catarrhalis	1	(0.7)
Burkholderia pseudomallei	1	(0.7)
Serratia marcescens	1	(0.7)

defined as total destruction of one lung, was found in 5 patients (3.5%). Spirometry was performed in 19 patients (13.2%). The mean (±SD) pre-bronchodilator percent predicted forced vital capacity (FVC), percent predicted forced expiratory volume in one second (FEV1) and FEV1/FVC ratio were 65.3 (±13.4)%, 62.1 (±15.4)% and 0.64 (0.15). Twelve of these 19 patients with pulmonary function testing results (63.2%) had an obstructive pattern on spirometry.

The sputum culture results are shown in Table 2. Eighteen patients (12.5%) had no growth on the sputum culture, 71 (49.3%) grew normal throat flora and 55 (38.2%) grew potential pathogens consisting of *Pseudomonas aeruginosa* (n = 19, 13.2%), *Klebsiella pneumoniae* (n = 9, 6.3%), *Escherichia coli* (n = 6, 4.2%), *Staphylococcus aureus* (n = 5, 3.5%), *Acinetobacter baumannii* (n = 4, 2.8%), *Proteus* spp (n = 3, 2.1%), *Haemophilus influenzae* (n = 2, 1.4%), *Moraxellla catarrhalis* (n = 1, 0.7%), *Burkholderia pseudomallei* (n = 1, 0.7%) and *Serratia marcescens* (n = 1, 0.7%).

Nineteen patients (13.2%) had *Pseudomonas aeruginosa* infection. Factors significantly associated with *P. aeruginosa* infection on univariate analysis were: prior history of pulmonary tuberculosis, N-acetylcysteine use and short acting beta-2 agonist use (Table 3). Factors significantly associated with *P. aeruginosa* infection on multivariate analysis were: female gender (adjusted OR: 7.08; 95% CI: 1.88-26.57; *p*=0.004), having a prior history of pulmonary tuberculosis (adjusted OR: 5.85; 95% CI: 1.40-24.41; *p*=0.015) and using N-acetylcysteine (adjusted OR: 4.69; 95% CI: 1.14-19.36; *p*=0.033) (Table 4).

DISCUSSION

In our study, the majority of subjects

SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH

Table 3
Factors associated with *Pseudomonas aeruginosa* infection analyzed by univariate logistic regression analysis.

Factors	Pseudomonas isolated (n=19)	No Pseudomonas Isolated (n=125)	OR (95%CI)	<i>p</i> -value
Mean (SD) age in years	66.6 (8.7)	64.8 (15.1)	1.01 (0.97-1.04)	0.613
Female gender	12 (63.2%)	49 (39.2%)	2.66 (0.98-7.22)	0.050
History of pulmonary tuberculosis	16 (84.2%)	75 (60%)	3.56 (0.98-12.84)	0.031
Antibiotic use in the previous 90 days	4 (21.1%)	43 (34.4%)	0.51 (0.16-1.63)	0.232
Previous infected bronchiectasis episode	3 (15.8%)	35 (28%)	0.48 (0.13-1.76)	0.239
Hemoptysis	6 (31.6%)	52 (41.6%)	0.65 (0.23-1.82)	0.401
Destroy lung	1 (5.3%)	4 (3.2%)	1.68 (0.18-15.89)	0.666
Diabetes mellitus	2 (10.5%)	21 (16.8%)	0.58 (0.13-2.71)	0.467
Inhale corticosteroid use	8 (42.1%)	32 (25.6%)	2.11 (0.78-5.72)	0.148
Long-term antibiotics use	1 (5.3%)	8 (6.4%)	0.81 (0.10-6.89)	0.845
N-acetylcysteine use	8 (42.1%)	23 (18.4%)	3.23 (1.17-8.92)	0.029
Short acting beta-2 agonist use	14 (73.7%)	57 (45.6%)	3.34 (1.13-9.84)	0.020

OR: odds ratio; CI: confident interval.

Table 4
Factors associated with *Pseudomonas aeruginosa* infection analyzed by multivariable logistic regression analyzed with stepwise backward selection.

Factors	Adjusted OR (95%CI)	p-value
Female gender	7.08 (1.88-26.57)	0.004
History of pulmonary tuberculosis	5.85 (1.40-24.41)	0.015
N-acetylcysteine use	4.69 (1.14-19.36)	0.033
Short acting beta-2 agonist use	4.02 (0.98-16.49)	0.053
Previous infected bronchiectasis episode	0.39 (0.09-1.66)	0.204
Antibiotic use in the previous 90 days	0.30 (0.07-1.19)	0.086
Diabetes mellitus	0.27 (0.05-1.64)	0.157

OR: odds ratio; CI: confident interval

were male, unlike the results of previous studies (Aksamit et al, 2017; Dimakou et al, 2016; Morrissey and Harper, 2004; Palwatwichai et al, 2002; Raghavan and Jain, 2016; Vidaillac et al, 2018). This may be due to differences in the study population and subject selection processes. In the Asia-Pacific the most common cause of bronchiectasis is tuberculosis, whereas in Europe and North America the most common etiologies of bronchiectasis are non-tuberculosis mycobacterial (NTM) infection, cystic fibrosis, autoimmune diseases and immunodeficiency (Chandrasekaran et al, 2018; Kwak et al, 2010; Redondo et al, 2016). Thailand is endemic for tuberculosis, which is more common in males (Jittimanee et al, 2009) while auto-immune disease and NTM infection are more common in females (Lonni et al, 2015). Sixty percent of study subjects had a prior history of pulmonary tuberculosis.

Bronchiectasis patients often experience multiple episodes of infection with symptoms of fever, worsening cough, dyspnea, increased production of sputum, production of purulent of sputum and hemoptysis which often required a course of antibiotic (Pasteur et al, 2010). Sputum cultures can guide treatment. However, in our study, fewer than 40% of subjects had a sputum culture revealing a potential pathogen. This percentage can be increased by performing an invasive procedure, such as bronchoscopy with bronchial brushings or bronchoalveolar lavage (Angrill et al, 2002; Chawla et al, 2015), but this aggressive approach is expensive, may not be easily available in some institutions and the patient may not tolerate the procedure or may not be able to afford it.

In our study, *P. aeruginosa* was the most commonly isolated organism, similar to the findings from other studies

(Chawla *et al*, 2015; Palwatwichai *et al*, 2002; Wilson *et al*, 1997). However, in some other studies *Haemophilus influenzae* was the most common organism isolated (Angrill *et al*, 2002; King *et al*, 2007; Li *et al*, 2005). This difference may be due to variations in pathogens by locations. This may also be due to the organisms found in various institutions and how long the patient was in that institution before the specimen was collected. It may also be due to patient factors, such as their immune status.

P.aeruginosa infection is associated with poorer pulmonary function, higher hospitalization rates and greater morbidity and mortality (Wang et al, 2018). P. aeruginosa colonization can also provoke intense inflammation resulting in unfavorable lung function test results (Guan et al, 2015a; Guan et al, 2015b; Ho et al, 1998). Previously reported factors significantly associated with P. aeruginosa infection include older patient age, greater extent of bronchiectasis seen on chest radiography or high-resolution computed tomography (HRCT), more frequent episodes of infections, previous corticosteroid usage, greater number of hospital admissions, prolonged hospital stay and poor lung function (Chawla et al, 2015; Zaibi et al, 2016). Although P. aeruginosa was the most common bacteria isolated in our study, it was found in only 13.2% of the total study subjects or 34.5% of those with a sputum culture positive for a potential pathogen, which is lower than that reported by previous studies (Araújo et al, 2018; Dhar et al, 2019). This may be because, many of our study subjects (73.6%) had no previous history of infection with their bronchiectasis and only a few (3.5%) had a destroyed lung on chest radiography, both previously reported as risk factors for P. aeruginosa

infection (Angrill *et al*, 2002; Chawla *et al*, 2015; Guan *et al*, 2014; Zaibi *et al*, 2016).

In our study, *P. aeruginosa* infection was more common among females, similar to the results of a study from Europe (Araújo *et al*, 2018). This might be a reason why females are reported to have more severe disease than males (Dimakou *et al*, 2016; Morrissey and Harper, 2004; Palwatwichai *et al*, 2002).

N-acetylcysteine is a mucolytic medication. N-acetylcysteine also has anti-inflammatory and antioxidant activity (Qi et al, 2019). A previous study from China reported long-term use of N-acetylcysteine may reduce the risk of infection in bronchiectasis patients (Qi et al, 2019). Spanish guidelines for the treatment of bronchiectasis include using N-acetylcysteine (Martínez-García et al, 2018). Some studies have reported N-acetylcysteine can inhibit biofilm formation and bacterial growth, while others report N-acetylcysteine increases bacterial biofilm formation and can decrease antibiotic activity in vitro (Hamilos, 2019; Landini et al, 2016; Rodríguez-Beltrán et al, 2015; Yin et al, 2018; Zhao and Liu, 2010). In our study, N-acetylcysteine use was associated with P. aeruginosa infection but only 21.5% of the subjects used N-acetylcysteine. A prospective randomized controlled trial with a larger population is needed to evaluate this association.

In our study, previous history of pulmonary tuberculosis was significantly associated with *P. aeruginosa* infection. Previously studies reported *P. aeruginosa* infection is more common in bronchiectasis and chronic obstructive pulmonary disease patients with a prior history of tuberculosis (Jin *et al*, 2018). Tuberculosis may cause architectural changes making it easier to get *P. aeruginosa* colonization

and infection (Jin *et al*, 2018; Yum *et al*, 2014). Bronchiectasis patients with a prior history of pulmonary tuberculosis tend to have more episodes of infection and more severe disease; both of which have previously been reported as risk factor associated with *P. aeruginosa* infection (Dhar *et al*, 2019; Jin *et al*, 2018).

There were limitations to this study. We had a small study population. We also did not determine the association between smoking and poor lung function and *P. aeruginosa* infected subjects had spirometry tests and were current smokers. Another limitation of our study was the retrospective design that had no controls and no specifications on how and when sputum was collected. If the sputum was obtained after receiving antibiotic this might interfere with the culture results.

In our study of bacterial causes of lung infection among non-cystic fibrosis patients, potential pathogens were isolated in only 38% of the subjects. *P. aeruginosa* was the most common pathogen isolated. Female gender, prior history of pulmonary tuberculosis and N-acetylcysteine use were significantly associated with *P. aeruginosa* infection. Data from this study can inform initial empiric treatment of infection in noncystic fibrosis bronchiectasis patients at the study hospital.

ACKNOWLEDGEMENTS

The authors gratefully thank Professor James A Will, University of Wisconsin Madison, for editing the manuscript via the Faculty of Medicine Publication Clinic, Khon Kaen University, Thailand. This study was supported by the Faculty of Medicine, Khon Kaen University, Thailand.

REFERENCES

- Aksamit TR, O'Donnell AE, Barker A, et al. Adult patients with bronchiectasis: a first look at the US Bronchiectasis Research Registry. *Chest* 2017; 151: 982-92.
- Angrill J, Agustí C, de Celis R, *et al.*Bacterial colonization in patients with bronchiectasis: microbiological pattern and risk factors. *Thorax* 2002; 57: 15-9.
- Araújo D, Shteinberg M, Aliberti S, *et al*. The independent contribution of *Pseudomonas aeruginosa* infection to long-term clinical outcomes in bronchiectasis. *Eur Respir J* 2018; 51. pii: 1701953.
- Baydarian M, Walter RN. Bronchiectasis: introduction, etiology, and clinical features. *Dis Mon* 2008; 54: 516-26.
- Borekci S, Halis AN, Aygun G, Musellim B. Bacterial colonization and associated factors in patients with bronchiectasis. *Ann Thorac Med* 2016; 11: 55-9.
- Cabello H, Torres A, Celis R, et al. Bacterial colonization of distal airways in healthy subjects and chronic lung disease: a bronchoscopic study. Eur Respir J 1997; 10: 1137-44.
- Chandrasekaran R, Mac Aogáin M, Chalmers JD, Elborn SJ, Chotirmall SH. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. *BMC Pulm Med* 2018; 18: 83.
- Chawla K, Vishwanath S, Manu MK, Lazer B. Influence of *Pseudomonas aeruginosa* on exacerbation in patients with bronchiectasis. *J Glob Infect Dis* 2015; 7: 18-22.
- Cole PJ. Inflammation: a two-edged sword--the model of bronchiectasis. *Eur J Respir Dis Suppl* 1986; 147: 6-15.
- Dhar R, Singh S, Talwar D, et al. Bronchiectasis in India: results from the European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India Registry. Lancet Glob Health 2019; 7: e1269-79.
- Dimakou K, Triantafillidou C, Toumbis M, Tsikritsaki K, Malagari K, Bakakos P. Non

- CF-bronchiectasis: aetiologic approach, clinical, radiological, microbiological and functional profile in 277 patients. *Respir Med* 2016; 116: 1-7.
- Feldman C. Bronchiectasis: new approaches to diagnosis and management. *Clin Chest Med*. 2011; 32: 535-46.
- Goeminne P, Dupont L. Non-cystic fibrosis bronchiectasis: diagnosis and management in 21st century. *Postgrad Med J* 2010; 86: 493-501.
- Guan WJ, Gao YH, Xu G, et al. Characterization of lung function impairment in adults wth bronchiectasis. *PLoS One* 2019; 9: e113373.
- Guan WJ, Gao YH, Xu G, et al. Effect of airway *Pseudomonas aeruginosa* isolation and infection on steady-state bronchiectasis in Guangzhou, China. *J Thorac Dis* 2015a; 7: 625-36.
- Guan WJ, Gao YH, Xu G, et al. Sputum bacteriology in steady-state bronchiectasis in Guangzhou, China. Int J Tuberc Lung Dis 2015b; 19: 610-9.
- Hamilos DL. Biofilm formations in pediatric respiratory tract infection Part 2: Mucosal biofilm formation by respiratory pathogens and current and future therapeutic strategies to inhibit biofilm formation or eradicate established biofilm. *Curr Infect Dis Rep* 2019; 21: 8.
- Ho PL, Chan KN, Ip MS, *et al*. The effect of *Pseudomonas aeruginosa* infection on clinical parameters in steady-state bronchiectasis. *Chest* 1998; 114: 1594-8.
- Jin J, Li S, Yu W, Liu X, Sun Y. Emphysema and bronchiectasis in COPD patients with previous pulmonary tuberculosis: computed tomography features and clinical implications. *Int J Chron Obstruct Pulmon Dis* 2018; 13: 375-84.
- Jittimanee S, Vorasingha J, Mad-asin W, Nateniyom S, Rienthong S, Varma JK. Tuberculosis in Thailand: epidemiology and program performance, 2001-2005. *Int J Infect Dis* 2009;13: 436-42.
- King PT, Holdsworth SR, Freezer NJ, Villanueva E, Holmes PW. Characterisation of the

- onset and presenting clinical features of adult bronchiectasis. *Respir Med* 2006; 100: 2183-9.
- King PT, Holdsworth SR, Freezer NJ, Villanueva E, Holmes PW. Microbiologic follow-up study in adult bronchiectasis. *Respir Med* 2007; 101: 1633-8.
- Kwak HJ, Moon JY, Choi YW, et al. High prevalence of bronchiectasis in adults: analysis of CT findings in a health screening program. Tohoku J Exp Med 2010; 222: 237-42.
- Landini G, Di Maggio T, Sergio F, Docquier J-D, Rossolini GM, Pallecchi L. Effect of high N-acetylcysteine concentrations on antibiotic activity against a large collection of respiratory pathogens. *Antimicrob Agents Chemother* 2016; 60: 7513-7.
- Li AM, Sonnappa S, Lex C, Wong E, Zacharasiewicz A, Bush A, Jaffe A. Non-CF bronchiectasis: does knowing the aetiology lead to changes in management? *Eur Respir J* 2005; 26: 8-14.
- Lonni S, Chalmers JD, Goeminne PC, *et al*. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. *Ann Am Thorac Soc* 2015; 12: 1764-70.
- Martínez-García MÁ, Máiz L, Olveira C, et al. Spanish guidelines on treatment of bronchiectasis in adults. *Arch Bronconeumol* 2018; 54: 79-87.
- McShane PJ, Naureckas ET, Tino G, Strek ME. Non-cystic fibrosis bronchiectasis. *Am J Respir Crit Care Med* 2013; 188: 647-56.
- Morrissey BM, Harper RW. Bronchiectasis: sex and gender considerations. *Clin Chest Med* 2004; 25: 361-72.
- Palwatwichai A, Chaoprasong C, Vattanathum A, Wongsa A, Jatakanon A. Clinical, laboratory findings and microbiologic characterization of bronchiectasis in Thai patients. *Respirology* 2002; 7: 63-6.
- Pasteur MC, Bilton D, Hill AT, British Thoracic Society Bronchiectasis Non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. *Thorax* 2010;

- 65: 577.
- Qi Q, Ailiyaer Y, Liu R, et al. Effect of N-acetylcysteine on exacerbations of bronchiectasis (BENE): a randomized controlled trial. Respir Res 2019; 20: 73.
- Raghavan D, Jain R. Increasing awareness of sex differences in airway diseases. *Respirology* 2016; 21: 449-59.
- Redondo M, Keyt H, Dhar R, Chalmers JD. Global impact of bronchiectasis and cystic fibrosis. *Breathe* (Sheff) 2016; 12: 222-35.
- Rodríguez-Beltrán J, Cabot G, Valencia EY, Costas C, Bou G, Oliver A, Blázquez J. N-acetylcysteine selectively antagonizes the activity of imipenem in *Pseudomonas aeruginosa* by an OprD-mediated mechanism. *Antimicrob Agents Chemother* 2015; 59: 3246-51.
- Vidaillac C, Yong VFL, Jaggi TK, Soh M-M, Chotirmall SH. Gender differences in bronchiectasis: a real issue? *Breathe* 2018; 14: 108-21.
- Wang H, Ji XB, Mao B, Li CW, Lu HW, Xu JF. *Pseudomonas aeruginosa* isolation in patients with non-cystic fibrosis bronchiectasis: a retrospective study. *BMJ Open* 2018; 8: e014613.
- Wilson CB, Jones PW, O'Leary CJ, Hansell DM, Cole PJ, Wilson R. Effect of sputum bacteriology on the quality of life of patients with bronchiectasis. *Eur Respir J* 1997; 10: 1754-60.
- Yin S, Jiang B, Huang *G, et al.* The interaction of N-acetylcysteine and serum transferrin promotes bacterial biofilm formation. *Cell Physiol Biochem* 2018; 45: 1399-409.
- Yum HK, Park IN, Shin BM, Choi SJ. Recurrent Pseudomonas aeruginosa infection in chronic lung diseases: relapse or reinfection? Tuberc Respir Dis (Seoul) 2014; 77: 172-7.
- Zaibi H, Missaoui L, Ben Amar J, et al. Pseudomonas aeruginosa isolates in bronchiectasis: wath particulaties and risk factors? Eur Respir J 2016; 48: PA1549.
- Zhao T, Liu Y. N-acetylcysteine inhibit biofilms produced by *Pseudomonas aeruginosa*. *BMC Microbiol* 2010; 10: 140.