

ASSESSMENT OF HEALTH PROFESSIONALS' PERCEPTIONS OF MEDICAL ERRORS IN PRIMARY CARE SETTINGS: A CROSS- SECTIONAL STUDY FROM ABHA, SAUDI ARABIA

Adam Dawria

Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait, Abha, Saudi Arabia

Abstract. Understanding perceptions and practices of medical errors in primary healthcare facilities is essential for enhancing patients' safety and fostering a culture of transparency. A descriptive cross-sectional study was conducted regarding frontline healthcare professionals' perceptions of the identification, reporting and outcome of medical errors within diverse clinical settings. The survey was carried out in Abha health sector, Asir region, Saudi Arabia. Respondents ($n = 223$) were mainly physicians, nurses and clinical laboratory technicians. Significant associations were observed between biological gender and profession, as well as perceptions of medical errors (p -value <0.05). Female responders were mainly nurses, while male responders were physicians and technicians. Males perceived medical errors as being underreported and reporting procedures unclear and time-consuming, while females perceived a lower frequency of medical errors and less uncertainty about the reporting procedures. Stratification of perceptions of medical errors according to years of work experience revealed, interestingly, no significant differences, but stratification according to sociodemographic parameters showed low perception rating among female respondents and respondents working in rural regions. The findings highlighted the importance of designing target-based interventions in reducing medical errors and impediments to the reporting process.

Keywords: healthcare worker, medical error, perception, primary care, reporting procedure

Correspondence: Adam Dawria, Department of Public Health, College of Applied Medical Sciences, King Khalid University, Building No. 12, King Abdullah Road, Khamis Mushait, Abha 62431, Saudi Arabia
Tel: +966 534189322 Email: aabdelqader@kku.edu.sa

INTRODUCTION

Basic healthcare services in Saudi Arabia face persistent challenges in illness patterns, population needs, systems, funding, and access. Nonetheless, primary health care has improved over the past four decades, resulting in a reduction in newborn mortality and prevalence of infectious diseases, as well as an increase in life expectancy (Almalki *et al*, 2011). By 2017, there were 2,325 public primary health care centers nationwide (Ministry of Health, 2017). The country is shifting its focus from secondary and tertiary care to restructuring primary health care to reduce reliance on secondary and tertiary services and improve access to preventive, community-based care (Almalki *et al*, 2011).

Worldwide, many patients are still harmed by medical care, which should be safe, and much of this harm is preventable. These adverse events occur across countries and income levels (Jha *et al*, 2013). In the Middle East, medication errors can occur at any

step from prescribing to dispensing medication, often due to system gaps, missed communication and high health personnel workload (Thomas *et al*, 2019).

An adverse event is defined as injury, including death, disability or extended hospitalization, directly caused by medical intervention (Kohn *et al*, 2000; UC Davis PSNet Editorial Team, 2024). A “near miss” refers to a mistake that could have caused harm but is prevented by chance or interception (UC Davis PSNet Editorial Team, 2024). Common healthcare concerns include misdiagnosis, surgical error, fall of a patient, accidental burn, and mistaken identity (Leape, 1994). A medical error is an action or inaction during the planning or carrying out of a medical procedure that causes or may cause an unintended result (Kohn *et al*, 2000; Reason, 2000; Makary and Daniel, 2016). An error of omission arises when a certain act is not carried out according to standard procedure, such as forgetting to strap a patient into a wheelchair or to steady a

gurney before transferring a patient (Makary and Daniel, 2016).

In Saudi Arabia, cross-sectional studies reported significant numbers of medical errors in regional settings and a reluctance to report such incidents. This may be due to a culture of avoiding blame, anxiety of social disapproval or litigation and inadequate awareness of the reporting mechanism (Alsulami *et al*, 2019; Alyami *et al*, 2022). The current national data on safety-reporting indicated that under-reporting remains common among healthcare providers, with nearly 75% of healthcare practitioners reporting zero to two safety events annually, reflecting limited engagement with incident reporting systems (Alkahf and Alonazi, 2024), and underscoring the need for easier disclosure procedures and a more “just”, non-punitive environment (Alkahf and Alonazi, 2024). Nurses tend to have higher awareness and more favorable attitudes toward reporting than dentists and interns, although fear of negative workplace consequences remains a key barrier

(Al-zain and Althumairi, 2021). Additionally, a significant amount of attention has been placed on the problem of mistakes in prescribing drugs at hospitals. Recently, primary health care centers are also paying an increasing amount of attention to patients’ safety (Aljadhey *et al*, 2016).

Saudi Arabia’s Vision 2030 and the Health Sector Transformation Program place patient safety at the core of healthcare reform by addressing the systemic causes of preventable harm through governance, regulation, and cultural change. In alignment with these national priorities, the Saudi Patient Safety Center (SPSC) was established in 2017 as the first specialized national body in the region dedicated to patient safety. The SPSC translates strategic objectives into practice by developing national patient safety standards, promoting a culture of safety, and supporting healthcare organizations in reducing risks and improving patient outcomes (SPSC, 2025; KSA, 2016).

WHO (2020) introduced an incident report to formally document unexpected outcomes or deviations, which affect patients or healthcare staff. Its purpose is to learn from errors, not to assign blame, and to initiate a system-level investigative process and recommend improvements to existing protocols (Vincent, 2010). Medical errors ranging from wrong medication or misdiagnosis to procedural delays are influenced by both the system's complexity and staff experience. Barriers to reporting, such as time-consuming processes and a lack of feedback, discourage disclosure, particularly among junior staff (Aljabari and Kadhim, 2021). Furthermore, perceptions of the types of error and reporting behavior differ across clinical units and departments, highlighting the need for targeted interventions (Ghobadian *et al*, 2021). It is required that all occurrences be kept private and that only authorized personnel have access to the documents.

Adverse events largely result from systemic failures such as poor

communication, weak leadership, inadequate training, and insufficient patient assessment. These risks are intensified by unclear policies and lines of authority. In Saudi Arabia, serious sentinel events include wrong-site surgery, severe medication-related harm, and critical equipment failures, highlighting the need for strong leadership, clear policies, and standardized patient safety systems (SPSC, 2025).

Medical professionals in Saudi hospitals often avoid reporting medical errors if patients are unharmed, mainly due to fear of repercussions (Aljadhey *et al*, 2016). Shifting from punitive approaches to educational, preventive frameworks has long been advocated (Vincent, 2010). Addressing these systemic gaps is vital for improving patient outcomes.

Research on medical errors has predominantly focused on hospital settings, with comparatively limited attention to primary care. However, evidence from Saudi Arabia indicates that primary care is also vulnerable

to patient safety risks, particularly medication-related errors, with prescription mistakes accounting for a substantial proportion of reported incidents. This highlights the need to extend patient safety standards and interventions beyond hospitals to primary care settings (SPSC, 2025).

It is equally important to examine how frontline health providers in primary care perceive medical errors, their response to such incidents, and reporting procedures. Understanding these perceptions and practices, the obstacles and enablers that shape them (Alsulami *et al*, 2019; Alyami *et al*, 2022; Alkahf and Alonazi, 2024), can inform the development of improved workplace policies and safety interventions at the primary care level.

Primary care facilities face patient safety risks comparable to hospitals, yet they receive far less research attention. This study explored how healthcare professionals in Abha's 24-hour primary health centers perceive and

practice medical error reporting. Understanding their attitudes and behaviors provides essential insights for strengthening safety culture and improving reporting systems. These findings can guide practical recommendations that support national patient safety priorities and advance the goals of Vision 2030 and the Health Sector Transformation Program (SPSC, 2025).

MATERIALS AND METHODS

Study design and location

The study employed a descriptive cross-sectional study design. The study was conducted in Abha health sector, Asir region, Saudi Arabia (Fig 1). The General Directorate of Health Affairs of the Asir region oversees 19 health sectors, which contain 211 primary healthcare centers and 20 hospitals. The largest sector, Abha, contains 36 health centers; 9 in urban and 27 in rural areas. Urban centers consist of Abha, Almansak and Mdenat Sultan, while rural centers are Bani Maleek and Tamneah. Some facilities are open 24 hours

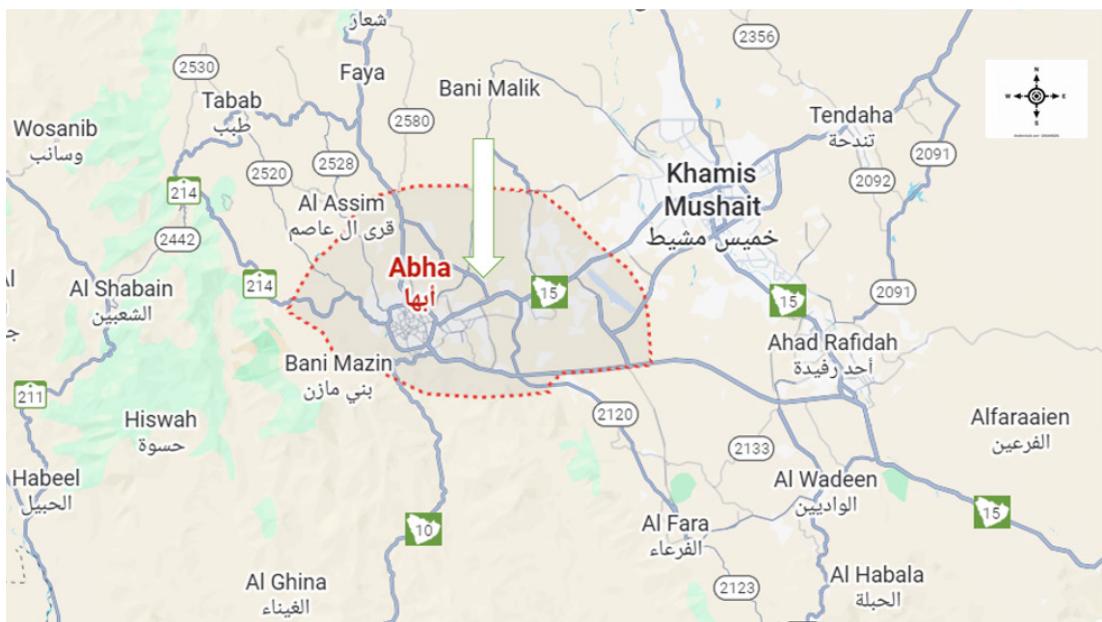


Fig 1 - Location of Abha health sector, Asir region, Saudi Arabia

The boundary of Abha health sector is marked by dotted red line. The white arrow indicates the location of Abha which represents the study area.

Source: Google Maps, accessed on 2025 Sep 10.

every day, while others offer service from 0800-1600 hours, Monday to Thursday, with an extended period from 1600-2300 hours from Thursday to Sunday (Ministry of Health, 2024). The study was carried out from July 2022 to March 2023, to allow sufficient time to recruit participants and gather meaningful data.

Study population

The study recruited medical professionals, such as physicians, dentists, nurses, and technicians (Clinical Laboratory and Radiology), who were employed in primary healthcare facilities in Abha. Inclusion criteria were: ≥ 18 years of age, both sexes, and working in Abha health centers under the

Ministry of Health, permanent or contract-based. Exclusion criteria were: working in non-clinical specialties like physiotherapy and health informatics, interns and students, and those on extended leave or hospitalized during the study period. The sample size was calculated using Thompson's equation for finite populations (Thompson, 2012); based on the known population of 537 healthcare professionals in the primary health centers, and assuming a 95% confidence level, a margin of error of 5% and a population proportion of 0.5 to ensure maximum variance; the calculated sample size was 221, and extended to 223 using the Epidemiological Information Version 7 (Epi Info 7) software (available at URL: <https://www.cdc.gov/epiinfo/support/downloads.html>). A total of 36 primary health care facilities were selected for the study, using a multistage sampling technique in four geographic zones: north, central, east, and west (Bhandari, 2023). The final selection was based on convenience sampling, whereby participants

were recruited from each health facility until the assigned sample portion for that facility was reached.

Data collection tool

A self-administered online questionnaire, adapted from previously validated tools (Alsulami *et al*, 2019; Alyami *et al*, 2022), consisted of three sections: demographic details, perceptions of medical errors, and reporting practices. Replies were rated using a simple 3-point Likert scale: agree (3 points), neutral/do not know (2 points) and disagree (1 point). The questionnaire contained 13 questions on perceptions of medical errors, with a score >25 considered "good", 20-25 "neutral" and <20 "poor". The questionnaire was sent using a Google Form via WhatsApp and official email.

A pilot study was conducted with 15 participants to ensure clarity and improve the questionnaire's reliability and validity. Internal consistency of the questionnaire was assessed using Cronbach's α , yielding a reliability coefficient of 0.87, indicating good reliability (Tavakol and Dennick, 2011).

Data analysis

Categorical variables were summarized using frequencies and percentages. Hypothesis testing was conducted using the chi-square test, with statistical significance accepted when a two-tailed p -value is <0.05 (McHugh, 2013). Data were calculated using the Statistical Package for the Social Sciences (SPSS), version 25 (IBM Corp, Armonk, NY).

Ethical considerations

The study protocols were approved by the Institutional Review Board of Asir Health Affairs

(REC-10-5-2022) and King Khalid University (ECM#2022-1601). Prior signed online consent was received from each participant. Replies were anonymized before data analysis.

RESULTS

Respondents were composed of 109 females and 114 males (Table 1). Female respondents were mainly nurses (70%) and for males, mainly physicians (43%). No significant associations were observed between biological gender and other demographic variables, namely age, nationality, years of work experience, employer (public/

Table 1

Gender distribution across demographic characteristics of study healthcare professionals in primary healthcare facilities, Abha health sector, Asir region, Saudi Arabia, July 2022 - March 2023

Demographic characteristic	Respondent, n (%)		p -value*
	Female (N = 109)	Male (N = 114)	
Age			0.482
20-30 years	25 (23)	26 (23)	
31-40 years	71 (65)	68 (59)	
41-50 years	13 (12)	20 (18)	

Table 1 (cont)

Demographic characteristic	Respondent, n (%)		<i>p</i> -value*
	Female (N = 109)	Male (N = 114)	
Profession			0.001
Physician	23 (21)	49 (43)	
Nurse	76 (70)	26 (23)	
Pharmacist	1 (1)	13 (11)	
Technician	9 (8)	26 (23)	
Nationality			0.700
Non-Saudi	6 (6)	5 (4)	
Saudi	103 (94)	109 (96)	
Work experience			0.662
1-5 years	17 (16)	21 (18)	
6-10 years	41 (37)	34 (30)	
11-20 years	47 (43)	55 (48)	
>20 years	4 (4)	4 (4)	
Employer			0.840
Government	75 (69)	77 (67)	
Private	34 (31)	37 (33)	
Locality			0.863
Rural	51 (47)	52 (46)	
Urban	58 (53)	62 (54)	

**p*-value <0.05 is considered statistically significant, comparing between groups using Chi-square test.

private), or locality of workplace.

The biological gender of respondents was significantly associated with certain perceptions of medical errors (Table 2). The majority (61%) of male participants agreed that there was a deficiency in the reporting procedures of medical errors, compared to 36% of females. A higher proportion of female respondents either disagreed (39%) or were uncertain (25%) about this issue compared to males (25 and 13% respectively). Perceptions regarding the impact of experience and training on medical errors also differed significantly, with 73% of male respondents agreeing that a lack of experience and training contributed to medical errors, while 60% of females held this view. This suggests a greater confidence of females in their training or a difference in interpretation of error causation. It is worth noting that the majority of female respondents were in the nursing profession, while males were medical practitioners.

Male participants were more likely to agree that the reporting

process was unclear and complex (69%) or time-consuming (56%), compared to 51 and 39% respectively, of females (Table 2). Female respondents were more inclined than males to disagree or express uncertainty about these procedural barriers (*p*-values = 0.025 and 0.042 respectively). However, no statistically significant gender differences were observed in perceptions of medical errors resulting from workplace shortage and overload, poor communication, medication mistakes, misdiagnosis, or delayed medical intervention.

Taken together, the findings suggested that while gender influenced perceptions of the structural and procedural aspects of medical error reporting, it does not significantly affect perceptions of the clinical or systemic causes of medical errors.

When the respondents were stratified according to length of time (1-5, 6-10, 11-20, and >20 years) of work experience, no statistically significant associations were observed among the four groups and

Table 2

Gender-based difference in perceptions of medical errors among study healthcare professionals in primary healthcare facilities, Abha health sector, Asir region, Saudi Arabia, July 2022 - March 2023

Perception regarding medical error	Respondent, n (%)		<i>p</i> -value*
	Female (N = 109)	Male (N = 114)	
Lack of reporting			0.013
Disagree	43 (39)	29 (25)	
Do not know	27 (25)	15 (14)	
Agree	39 (36)	70 (61)	
Shortage of personnel and work overload are causes			0.991
Disagree	22 (20)	23 (20)	
Do not know	10 (9)	11 (10)	
Agree	77 (71)	80 (70)	
Cause stems from lack of experience and training			0.022
Disagree	35 (32)	19 (17)	
Do not know	9 (8)	12 (10)	
Agree	65 (60)	83 (73)	
Cause stems from poor language and communication			0.183
Disagree	47 (43)	42 (37)	
Do not know	13 (12)	8 (7)	
Agree	49 (45)	64 (56)	
Reporting process not clearly described			0.025
Disagree	32 (29)	22 (19)	
Do not know	21 (20)	13 (12)	
Agree	56 (51)	79 (69)	

Table 2 (cont)

Perception regarding medical error	Respondent, n (%)		<i>p</i> -value*
	Female (N = 109)	Male (N = 114)	
Reporting process complex and time-consuming			0.042
Disagree	44 (40)	35 (31)	
Do not know	22 (21)	15 (13)	
Agree	43 (39)	64 (56)	
Impacts patient outcome			0.560
Disagree	51 (47)	61 (53)	
Do not know	22 (20)	22 (20)	
Agree	36 (33)	31 (27)	
Impacts accuracy and timeliness of disease diagnosis			0.342
Disagree	42 (38)	47 (41)	
Do not know	33 (31)	20 (18)	
Agree	34 (31)	47 (41)	
Cause of delay in medical intervention			0.383
Disagree	49 (45)	41 (36)	
Do not know	28 (26)	31 (27)	
Agree	32 (29)	42 (37)	

**p*-value <0.05 is considered statistically significant, comparing between groups using Chi-square test.

any of the considered perceptions on medical errors (Table 3). When the respondents were stratified according to sociodemographic parameters, only the biological gender of the respondents and the locality of their workplace showed a significant difference (p -values = 0.031 and 0.037 respectively) in the rating of perception on medical errors (Table 4). Female respondents and rural locality were associated with a poor perception rating.

DISCUSSION

Understanding how healthcare professionals perceive and respond to medical errors is crucial for enhancing patient safety, particularly in frontline settings. Although many such studies have been undertaken in hospitals, fewer have been focused on primary care facilities (Bismark *et al*, 2013; WHO, 2025a). The survey was conducted among a selected number of primary care centers in Abha medical sector, Asir region, Saudi Arabia. An online self-answered questionnaire consisting of 13 perceptions on

medical errors was sent to 537 healthcare personnel from July 2022 to March 2023, and 223 (41%) replies were received.

The majority of female respondents were nurses, while male respondents were mainly physicians and technicians. This gender distribution aligned with global and regional trends, where nursing remains a female-dominated profession and a medical/technical role is more commonly occupied by men (Statista, 2025; WHO, 2025a). One interesting finding was that no significant associations were found between biological gender and other sociodemographic parameters, such as age, nationality, years of work experience, public or private service, or locality. This supports the view that the biological gender of an employee is more strongly tied to a profession than to broader demographic factors (Bismark *et al*, 2013; WHO, 2025b).

The findings demonstrated that the biological gender of a healthcare personnel significantly influenced perceptions of medical errors,

Table 3

Association between work experience and perceptions of medical error among healthcare professionals in primary healthcare facilities, Abha health sector, Asir region, Saudi Arabia, July 2022 - March 2023

Perception of medical error	Frequency based on work experience of the respondent, n (%)			p-value*
	1-5 years (N = 38)	6-10 years (N = 75)	11-20 years (N = 102)	
Reporting process complex and time-consuming				
Disagree	13 (34)	28 (37)	36 (35)	2 (25)
Do not know	6 (16)	14 (19)	15 (15)	2 (25)
Agree	19 (50)	33 (44)	51 (50)	4 (50)
Involving medication				
Disagree	15 (39)	39 (52)	57 (56)	1 (13)
Do not know	12 (32)	15 (20)	15 (15)	2 (25)
Agree	11 (29)	21 (28)	30 (29)	5 (62)
Involving diagnosis				
Disagree	11 (29)	27 (36)	47 (46)	4 (50)
Do not know	12 (32)	23 (31)	17 (17)	1 (13)
Agree	15 (39)	25 (33)	38 (37)	3 (37)
Causing delayed medical intervention				
Disagree	17 (45)	29 (39)	42 (41)	2 (25)
Do not know	12 (31)	24 (32)	22 (22)	1 (13)
Agree	9 (24)	22 (29)	38 (37)	5 (62)

Table 3 (cont)

Perception of medical error	Frequency based on work experience of the respondent, n (%)			p-value*
	1-5 years (N = 38)	6-10 years (N = 75)	11-20 years (N = 102)	
Stems from error in laboratory report				
Disagree	22 (58)	40 (53)	51 (50)	6 (76)
Do not know	9 (24)	23 (31)	32 (31)	1 (12)
Agree	7 (18)	12 (16)	19 (19)	1 (12)
Involving surgical procedure (e.g., tooth extraction, dressing wound, suturing)				
Disagree	22 (58)	47 (63)	55 (54)	5 (62)
Do not know	11 (29)	15 (20)	24 (24)	0 (0)
Agree	5 (13)	13 (17)	23 (22)	3 (38)
Involving injection or IV fluid				
Disagree	20 (53)	44 (59)	52 (51)	4 (50)
Do not know	5 (13)	13 (17)	13 (13)	1 (12)
Agree	13 (34)	18 (24)	37 (36)	3 (38)
Involving fall of patient				
Disagree	27 (71)	46 (61)	69 (68)	5 (63)
Do not know	7 (18)	11 (15)	14 (14)	1 (12)
Agree	4 (11)	18 (24)	19 (18)	2 (25)

*p-value <0.05 is considered statistically significant, comparing among groups using Fisher's Exact test.

IV: intravenous

Table 4

Association between sociodemographic characteristic and rating of perception regarding medical error among healthcare professionals in primary healthcare facilities, Abha health sector, Asir region, Saudi Arabia, July 2022 - March 2023

Sociodemographic characteristic	Frequency based on the perception rating of the participant, n (%)			p-value*
	Good (N = 138)	Neutral (N = 52)	Poor (N = 33)	
Sex				0.031
Female	61 (44)	25 (48)	23 (70)	
Male	77 (56)	27 (52)	10 (30)	
Age				0.825
20-30 years	32 (23)	12 (23)	7 (21)	
31-40 years	89 (64)	30 (58)	20 (61)	
41-50 years	16 (12)	10 (19)	6 (18)	
>50 years	1 (1)	0 (0)	0 (0)	
Profession				0.754
Physician	44 (32)	18 (35)	10 (31)	
Nurse	59 (43)	25 (48)	18 (54)	
Pharmacist	11 (8)	2 (4)	1 (3)	
Technician	24 (17)	7 (13)	4 (12)	
Nationality				0.482
Non-Saudi	6 (4)	2 (4)	3 (9)	
Saudi	132 (98)	50 (96)	30 (91)	
Work experience				0.593
1-5 years	26 (19)	8 (15)	4 (13)	
6-10 years	42 (30)	18 (35)	15 (45)	
11-20 years	65 (47)	23 (44)	14 (42)	
>20 years	5 (4)	3 (6)	0 (0)	

Table 4 (cont)

Sociodemographic characteristic	Frequency based on the perception rating of the participant, n (%)			<i>p</i> -value*
	Good (N = 138)	Neutral (N = 52)	Poor (N = 33)	
Employer				0.170
Government	88 (64)	38 (73)	26 (79)	
Private	50 (36)	14 (27)	7 (21)	
Locality				0.037
Rural	58 (42)	23 (44)	22 (67)	
Urban	80 (58)	29 (56)	11 (33)	

Perception rating was based on a 13-item scale (maximum score = 39): scores >25 = good, 20-25 = neutral, <20 = poor.

**p*-value <0.05 is considered statistically significant, comparing among groups using Fisher's Exact test.

particularly as regards reporting practices and perceived causes. Male participants were more likely to agree that medical errors were underreported, while a major proportion of female respondents disagreed. This difference in perception might be due to their respective profession, the majority of male respondents being physicians and female respondent nurses, but there are other possible explanations, *viz*, exposure to reporting systems or confidence in

institutional transparency (Bismark *et al*, 2013). Male physicians showed greater concern than females about systemic barriers to reporting medical errors (Kaldjian *et al*, 2008; Vrbanjak *et al*, 2016).

Perceptions of lack of experience and training as causal factors of medical errors were reported by nearly two-thirds of males, while some 50% of females agreed. Bismark *et al* (2013) observed that 62% of female medical practitioners, compared to 49%

of males, report high readiness to perform their duties, indicating a sex-based difference in self-assessed competence.

Perceptions of the reporting procedures of medical errors emerged as another area of sex-based differences. A slightly higher proportion of male participants than females perceived the process as unclear, but twice as many males as females found the reporting procedure time-consuming. Lawton and Parker (2002) noted that men may be more sensitive to procedural inefficiencies, particularly in hierarchical or bureaucratic systems. Vrbnjak *et al* (2016) reported that 63% of male healthcare workers cite complexity and lack of clarity as barriers to incident reporting, compared to 46% of female staff.

Overall, the current study findings indicated that biological gender influenced perceptions on structural and procedural aspects of medical error reporting but not on clinical causal factors. Makary and Daniel (2016) reported

that clinical error recognition tends to be uniform across the sexes when standardized protocols and training are in place, with equal proportions (~50%) of male and female clinicians identifying diagnostic and medication errors as key contributors to patients' adverse outcomes.

Stratification of the current study findings according to years of work experience and to sociodemographic factors revealed only two significant associations with the respondents' rating of perceptions on medical errors: poor ratings were obtained from female respondents and respondents working in primary care centers located in rural regions of Abha medical sector. In an earlier study, Bismark *et al* (2013) pointed out that the gender-based differences in attitudes towards error reporting and system transparency. Urban healthcare centers have better access to training, resources, and reporting infrastructure (WHO, 2025a). These findings are in concordance with studies highlighting biological gender and geographic disparities

in healthcare attitudes (Alshammari *et al*, 2024).

The current study has several limitations. Firstly, its cross-sectional design restricted causal inference between demographic factors and perceptions of medical errors. Secondly, the use of self-reported data might also introduce response bias, particularly in sensitive areas such as medical error reporting and professional confidence. And thirdly, the participants were recruited from a specific geographic region with its particular population characteristics and norms, which would limit generalization across the nation.

In conclusion, the survey revealed that the influences affecting perceptions of medical errors by healthcare personnel at the primary care centers on issues such as awareness, frequency of occurrence and reporting procedures were multifactorial. Biological gender was a critical factor, with the majority of male respondents, who were mainly physicians, perceiving underreporting of medical errors

and procedural barriers to the reporting, while the majority of female respondents, mostly nurses, did not perceive there was an abundance of medical errors or impediments to the reporting process. Interestingly, stratification according to years of work experience failed to reveal any significant differences in their perceptions. However, stratification according to sociodemographic parameters indicated a poor perception rating of female respondents and respondents working in rural regions. These findings underscore the need for targeted policies that promote gender equality in the choice of a career in the healthcare profession, locality-unbiased resource allocation and procedural clarity in reporting medical errors. The findings are in keeping with Saudi Arabia's Vision 2030 goals to improve healthcare quality and reduce preventable harm to patients.

ACKNOWLEDGEMENTS

The author expresses sincere gratitude to all healthcare professionals who participated in

this study and shared their valuable insights, to the administrative and research support teams for facilitating data collection and coordination, and to King Khalid University for institutional support and commitment to advancing healthcare research.

CONFLICT OF INTEREST DISCLOSURE

The author declares no conflict of interest.

REFERENCES

Aljabari S, Kadhim Z. Common barriers to reporting medical errors. *ScientificWorldJournal* 2021; 2021: 6494889.

Aljadhey H, Mahmoud MA, Ahmed Y, et al. Incidence of adverse drug events in public and private hospitals in Riyadh, Saudi Arabia: the (ADESA) prospective cohort study. *BMJ Open* 2016; 6(7): e010831.

Alkahf D, Alonazi W. Exploring the safety reporting culture among healthcare practitioners in Saudi hospitals: a comprehensive national study. *BMC Health Serv Res* 2024; 24(1): 769.

Almalki M, Fitzgerald G, Clark M. Health care system in Saudi Arabia: an overview. *East Mediterr Health J* 2011; 17(10): 784-93.

Alshammari AS, Aldhuwayhi TZ, Alibrahim NO, et al. Assessment of patient safety culture among nurses working at tertiary care hospitals in Aljouf region, Saudi Arabia. *Cureus* 2024; 16(4): e58429.

Alsulami SL, Sardidi HO, Almuzaini RS, et al. Knowledge, attitude and practice on medication error reporting among health practitioners in a tertiary care setting in Saudi Arabia. *Saudi Med J* 2019; 40(3): 246-51.

Alyami MH, Naser AY, Alswar HS, Alyami HS, Alyami AH, Al Sulayyim HJ. Medication errors in Najran, Saudi Arabia: reporting, responsibility, and characteristics: a cross-sectional study. *Saudi Pharm J* 2022; 30(4): 329-36.

Al-zain Z, Althumairi A. Awareness, attitudes, practices, and perceived barriers to medical error incident reporting among faculty and health care practitioners (HCPs) in a dental clinic. *J Multidiscip Healthc* 2021; 14: 735-41.

Bhandari P. Multistage sampling:

introductory guide and examples, 2023 [cited 2025 Aug 09]. Available from: URL: <https://www.scribbr.com/methodology/multistage-sampling>

Bismark MM, Spittal MJ, Gurrin LC, Ward M, Studdert DM. Identification of doctors at risk of recurrent complaints: a national study of healthcare complaints in Australia. *BMJ Qual Saf* 2013; 22(7): 532-40.

Ghobadian S, Zahiri M, Dindamal B, Dargahi H, Faraji-Khiavi F. Barriers to reporting clinical errors in operating theatres and intensive care units of a university hospital: a qualitative study. *BMC Nurs* 2021; 20(1): 211.

Jha AK, Larizgoitia I, Audera-Lopez C, Prasopa-Plaizier N, Waters H, Bates DW. The global burden of unsafe medical care: analytic modelling of observational studies. *BMJ Qual Saf* 2013; 22(10): 809-15.

Kaldjian LC, Jones EW, Rosenthal GE, Tripp-Reimer T, Hillis SL. An empirically derived taxonomy of factors affecting physicians' willingness to disclose medical errors. *J Gen Intern Med* 2006; 21(9): 942-8.

Kingdom of Saudi Arabia (KSA). Saudi Vision 2030, 2016 [cited 2025 Sep 27]. Available from: URL: <https://www.vision2030.gov.sa>

Kohn LT, Corrigan JM, Donaldson MS, editors. *To err is human: building a safer health system*. Washington, DC: National Academy Press; 2000.

Lawton R, Parker D. Barriers to incident reporting in a healthcare system. *Qual Saf Health Care* 2002; 11(1): 15-8.

Leape LL. Error in medicine. *JAMA* 1994; 272(23): 1851-7.

Makary MA, Daniel M. Medical error - the third leading cause of death in the US. *BMJ* 2016; 353: i2139.

McHugh ML. The chi-square test of independence. *Biochem Med (Zagreb)* 2013; 23(2): 143-9.

Ministry of Health. On-duty healthcare center in Asir, 2024 [cited 2025 Aug 23]. Available from: URL: <https://www.moh.gov.sa/en/HealthAwareness/On-Duty-Healthcare-Centers/Pages/Assir.aspx>

Ministry of Health. Statistical yearbook 2016, 2017 [cited 2025 Sep 20]. Available from: URL: <https://www.moh.gov.sa/en/Ministry/Statistics/book/Documents/Statistical-Yearbook-1437H.pdf>

Reason J. Human error: models and management. *BMJ* 2000; 320(7237): 768-70.

Saudi Patient Safety Center (SPSC). Patient safety standards book: raising the bar for safer healthcare (V 1.0), 2025 [cited 2025 Sep 20]. Available from: URL: <https://resources.spsc.gov.sa/pmo/PatientSafetyStandardsbookV.0.1forsharing21.11.2024.pdf>

Statista. Gender distribution of Saudi nationals in 2022, by healthcare sector, 2025 [cited 2025 Sep 27]. Available from: URL: <https://www.statista.com/statistics/1537719/saudi-arabia-gender-distribution-saudi-citizens-by-healthcare-sector>

Tavakol M, Dennick R. Making sense of Cronbach's alpha. *Int J Med Educ* 2011; 2: 53-5.

Thomas B, Paudyal V, MacLure K, et al. Medication errors in hospitals in the Middle East: a systematic review of prevalence, nature, severity and contributory factors. *Eur J Clin Pharmacol* 2019; 75(9): 1269-82.

Thompson SK. Sampling, 3rd ed. Hoboken, NJ: John Wiley & Sons; 2012.

UC Davis PSNet Editorial Team. Adverse events, near misses, and errors, 2024 [cited 2025 Sep 27]. Available from: <https://psnet.ahrq.gov/primer/adverse-events-near-misses-and-errors>

Vincent C. Patient safety. 2nd ed. West Sussex, UK: Wiley-Blackwell; 2010.

Vrbnjak D, Denieffe S, O'Gorman C, Pajnkihar M. Barriers to reporting medication errors and near misses among nurses: a systematic review. *Int J Nurs Stud* 2016; 63: 162-78.

World Health Organization (WHO). Global health workforce statistics database, 2025a [cited 2025 Sep 27]. Available from: URL: <https://www.who.int/data/gho/data/themes/topics/health-workforce>

World Health Organization (WHO). Nursing personnel by sex (%), 2025b [cited 2025 Sep 27]. Available from: URL: <https://www.who.int/data/gho/data/indicators/indicator-details/GHO/nurses-by-sex-%28-%29>

World Health Organization (WHO). Patient safety incident reporting and learning systems: technical report and guidance, 2020 [cited 2025 Sep 20]. Available from: URL: <https://iris.who.int/server/api/core/bitstreams/49947589-0a06-4708-8cc9-379bc8d2f9f2/content>